CONTRAST SENSITIVITY MEASUREMENTS, INTERPRETATION AND MODIFICATIONS
KAREN SQUIER, OD, FAAO
CHICAGO, IL
2014

AER International, San Antonio, Texas

Goals

- Review types of contrast sensitivity tests and their measurements
- Discuss how contrast sensitivity tests should be interpreted
- Discuss environmental and patient centered modifications

Vision

- Ability to see details, objects and their environment
- Typically measured with high contrast charts
 - Snellen most common test in primary care
 - Test is typically given at 20 foot distance
- Using visual acuity charts measures ability of patient to see details
 - Good measurement of spectacle blur
 - Does not give functional or descriptive picture of how well patient sees

Vision

- Despite good visual acuity patients may still have complaints that far outweigh their performance on acuity testing
 - Poor mobility
 - Difficulty with facial recognition
 - Problems with glare

Visual acuity

- Functionally, does not assess patients performance in real life situations

Contrast Sensitivity

- Contrast is the difference in luminance between an object and its background
Contrast Sensitivity

- Contrast sensitivity is the measurement of the ability to discern and detect an object against its background.

- Descriptive measurement of visual ability
- Identifies additional layers of visual performance
- Ginsberg et al. stated “Contrast sensitivity is the best predictor of visual function.”

Indications for Contrast Sensitivity Assessment

- Case history
 - First indicator whether patient has difficulties with contrast
 - Chief complaint may directly indicate need for contrast testing
 - Careful questioning of patients' difficulties in home environment, school or vocational setting, etc

- Glare questioning
 - Environmental lighting
 - What is primary lighting source?
 - Pros and cons
 - Response to sun light
 - Are there activities you avoid because of lighting?

- Mobility questioning
 - Do you bump into things?
 - Do you have difficulty stepping off curbs?
 - Do you feel safe when traveling independently?
Indications for Contrast Sensitivity Assessment

- Entrance testing does not match patient complaints
 - Reasonable visual acuity
 - Reasonable visual field
 - Patient reports poor performance in multiple activities

Indications for Contrast Sensitivity

- Whittaker and Elliot found in a study of 116 patients with ocular dysfunction, 16 presented with normal visual acuity but had reduced contrast sensitivity
 - Those 16 patients had ocular disease ranging from glaucoma and multiple sclerosis
 - Optometry and Visual Science, 1992

Indication for Contrast Sensitivity Assessment

- Ocular diagnosis
 - Certain diagnoses are more likely to give contrast sensitivity measurements than others
 - Optic nerve conditions
 - Corneal disease or treatments
 - Cataracts
 - Diabetic retinopathy
 - Retinitis pigmentosa

Optic Nerve Conditions

- Optic nerve conditions
 - Glaucoma
 - Optic atrophy
 - Optic neuritis/multiple sclerosis
 - Hereditary Optic nerve disease
 - Contrast Sensitivity can measure progression in these conditions before visual acuity
 - Important to test CS in these patients for mobility

Corneal Conditions
Corneal disease and treatment

- Corneal Scarring
- Dry Eye
- Keratoconus
- Corneal Transplant
- Contact lenses
- Refractive Surgery
 - Lasik
 - PRK

Cataract

- Congenital
- Nuclear Sclerosis
- Cortical Cataracts
- Posterior Subcapsular Cataract
 - Scatters light toward retina: reduces image quality
 - Scatters light toward cornea: causes reduction in light
 - Scatter of light increases 16 times between 40 and 80

Cataracts

Diabetic Retinopathy

- Vitreous Hemorrhage can scatter light and reduce illumination
- Laser treatments reduce ability for light to be absorbed by retinal cells
- Macular edema causes reduction in high frequency contrast loss

Diabetic Retinopathy

Retinitis Pigmentosa
Retinitis Pigmentosa

- Retinal degeneration
 - Reduced light absorption
 - Reduced acuity/visual field
 - Cataract could further reduce contrast
 - Macular pathology can further reduce higher frequency contrast loss

Weber’s Contrast

- \(\frac{(I-I_b)}{I_b} \)
- \(I \) = Luminance of Object
- \(I_b \) = Luminance of background

Michelson’s Contrast

- \(\frac{(I_{max}-I_{min})}{(I_{max}+I_{min})} \)
- \(I_{max} \) = maximum Luminance
- \(I_{min} \) = minimum Luminance

Contrast Confounders

- Glare: Poor lighting, sunlight
 - Can be related to quality of light or ocular health
 - Poor light position
 - Warmth of light source (fluorescent vs halogen)
 - Reflection off of image source
 - Age

Inclement weather

- Fog and rain cause scatter of light
 - Adds general depression to illumination
 - Important to consider with driver or independent traveler
Patterns
- Background patterns reduce luminance of background
- Cause figure ground effect where object can get lost compared to background
- Confuses visual interest

Poor image quality
- Washes out darkness of tint
- Less difference between object and background
- Poor edge quality, not well defined
- Induces blur that cannot be improved on with magnification or spectacle prescription

Age
- Contrast loss across all frequencies
- Decrease of 4.6 letters per decade (Hägerstrom-Portnoy et al)
- Due to reduced optical quality and neural integrity

Age
- Physical changes to the cornea and lens cause increased light scatter
- Decreased quality of tear film causes poor image quality
- Increased incidence of dry eye

Age
- Recovery from bright lights takes 8 times longer over the age of 58
- Greater than 3 minutes to recover from 1 minute of light exposure.
- Poses increased difficulty adjusting from light to dark and potentially decreased safety

Safety
- Contrast sensitivity associated with injuries and falls
 - Wood et al (2011) found that ‘visual acuity and reduced contrast sensitivity’ were consistent visual predictors of falls
 - Surprisingly, visual field was not as significant a factor
Safety

- Falls were correlated to poor visual acuity and reduced contrast sensitivity
 - 54% fell more than once, 30% fell more than twice
 - More likely to happen on level surface
 - Outdoor falls more common than indoors

- Referral for Orientation and Mobility is imperative to reduce falls and injuries
- Need to incorporate home evaluation into rehabilitation plan
- Need to educate patients and family members on contrast enhancement and demonstrate in office

Contrast sensitivity—Measurements

- Useful measurements in vision rehabilitation and disease management
- Gives descriptive measurement of vision
- Can show disease progression, i.e., glaucoma, optic atrophy (Wilensky and Hawkins, 2001)
- Can be used to predict performance

History of Contrast Sensitivity Testing

- Computer generated stimulus
 - Grated acuity
 - Used initially for research purposes
 - Time consuming
 - Expensive
 - Consider cost of computer and maintenance
 - Cost of program

- The Arden Chart
 - First contrast chart used in clinic
 - Seven cards with variable grates
 - Presented at 57 cm

 a

 b

 c

Arden Test

- Hand held test of grated acuity
- Originally used as screening test for glaucoma
- First noted clinical test for assessing contrast sensitivity
 - First commercially available test
 - Gives information of spatial frequency and quality of vision loss
Contrast Sensitivity

- Measurements are taken using standardized tests
 - Requires consistent illumination
 - Proper test distance
 - Proper spectacle correction
- Several tests available
- Can be used for clinical or research purposes
 - Purpose of test sometimes dictates chart used

Measurements

- Can be taken binocularly or monocularly
- Charts available for distance or near
 - Requires good, uniform illumination
 - Requires proper spectacle correction

Vistech

- Grated Measurements
 - Requires uniform illumination
 - Test distance 3 meters
 - Near chart is available
 - Directly measures types of spatial contrast loss
 - High, medium and low

Binocular vs. Monocular Testing

- Binocular Testing
 - More efficient
 - Gives overall, general picture of summation of vision
- Monocular Testing
 - Gives information of binocularity
 - More useful for disease progression
 - Can confirm binocular rivalry

Vistech

- 5 levels of spatial Frequency
 - 1.5 cpd, 3 cpd, 6 cpd, 12 cpd, 18 cpd
 - Measurements for Medium and low spatial frequency
 - Forced Choice
 - Only 4 possible answers
Vistech

- Wide range of applications possible
- Disease progression
- Research purposes
- Indicates more specifically level of contrast sensitivity loss
- Unfortunately, has not been shown to be extremely repeatable
- Multiple variants are available

Letter Charts

- More recognizable to patients
- More common clinically
- Available in single letter or continuous text
- Requires visual acuity that allows for recognition of letters

Pelli-Robson Contrast Sensitivity

- Common chart used for clinical and research purposes
- Test distance is typically 1 meter but can vary
- Highly repeatable
 - Maintain proper testing conditions
 - Plots one point on contrast curve
- Highly researched
 - Newer contrast charts are compared to Pelli-Robson

Pelli-Robson

- Each line has two triplets, of letters with descending contrast
 - 100% is highest contrast
 - .6% is lowest contrast
- Scored based on last triplet with 2 correct letters
- Letters are 4.9cm X 4.9 cm
- Testing is completed at 1m
 - Equates to 1 cycle per degree

Pelli-Robson

- Quick and efficient to administer
- Has expiration date to ensure maximal contrast
- In order to measure different types of spatial contrast, use different test distances
 - 3 meter, 1 meter, .5m
Near Charts

- Less cumbersome
- Easier to ensure uniform illumination
- Requires proper spectacle correction
- Variability in recording measurements
- With exception of MARS chart, not as reliable and repeatable

MARS Chart

- Test distance is 40-50 cm,
- Letters are 16mm by 16mm
- Easier to fully illuminate
- 3 different test cards to reduce patient memorization
- Can test monocularly or binocularly
- Shown to be useful for clinical and research purposes

MARS Chart

- Each letter has descending contrast
 - Pelli-Robson descends in triplets
- Stored in dark envelope to deter fading and yellowing of background
- Requires proper spectacle correction
- Good repeatability

Colenbrander Continuous Text

- 10% contrast
- Test distance is 40 centimeters
- Acuity range is .2 M to 8M
- Can use acuity measurements for predicting magnification
- Presentation of text is familiar to patients
 - More consistent with goal print
 - Similar to near acuity charts

Hiding Heidi

- Good for children or non verbal patients
- Forced choice
- Requires good cooperation
- Difficult to ensure proper illumination
 - Still gives useful information, but may have variability from exam to exam
Lea Reduced Contrast Chart

- Useful for children, patients with poor cognition or aphasia
- Can use with key from Lea acuity chart to assist non-verbal or shy patients
- Available in multiple forms
 - Some tests give percentage loss
 - Other tests give Log Mar

Test Selection

- Large variety of tests available
- Research is ongoing
 - Determines which tests are most reliable
 - How each testing method compares to each other
 - Development of new, more efficient tests
 - Which tests predict disease progression

Interpretations

- Contrast testing results in a better picture of how a patient sees
- Findings help determine interventions and rehabilitation
- Dictates additional referrals to improve rehabilitation potential

Interpretation

- Administering test identifies a contrast problem
 - Is that enough information?
 - Not really. Need to know how much contrast loss is present to provide efficient rehabilitation
 - Is the information consistent with disease diagnosis?
 - Hopefully. May require further investigation of ocular health
 - What do those numbers mean?
 - They quantify contrast loss and help drive and direct rehabilitation strategies.
Spatial Frequency

- Spatial frequency is a scientific and statistical method of calculating visual detail
 - Measured in sinusoidal waves
 - Different sizes and level of detail of stimuli have different sized waves

Interpretation

- Types of contrast sensitivity loss
 - High Spatial Frequency Loss
 - Medium Spatial Frequency Loss
 - Low Spatial Frequency Loss

High Spatial Frequency

- Over 10 cycles per degree
- Related to 'detail vision'
 - Features of an object
 - Correlates closely with visual acuity
 - Spatial frequency most affected by spectacle blur

Medium Spatial Frequency

- 2-6 cycles per degree
- Relates to object recognition
- Compounded by bad lighting, weather, etc
- Reduction in MSF warrants referral for ADL evaluation and O&M

Low Spatial Frequency

- Less than .5 cycles per degree
- Gross recognition detection of objects
- Effect compounded by poor lighting, poor weather conditions
- Warrants referral for O&M, ADL assessment
Interpretation

- Level of contrast loss
 - Profound
 - Severe (less than 1.5 log Mar)
 - Moderate
 - Near Normal
 - Normal

Interpretation and Modifications

- Goal for rehabilitation increase threshold
- Increase contrast detection and increase patient sensitivity
- Severe contrast loss is when <1.5 or 70%
 - Need multidisciplinary approach
 - Rehabilitation teachers, OT, O&M

Thresholds

- Determine contrast of object of interest
- Need to improve ability for visual system to appreciate object of interest
- Interventions and modifications are designed to improve ability to function
 - Improve possibility of detection by visual system

Thresholds

- Consider reading a newspaper
 - Someone with mild CS loss
 - Someone with severe to profound CS loss
 - How much modification will be necessary to achieve goal?

Thresholds

- Contrast reserves of 3:1 typically yield the most successful rehabilitation
- Goal is to have patient's contrast detection 3 times more sensitive than contrast of object
 - Newspaper contrast is 75%, patient threshold is 15%, reserves = 75/15 = 5
 - Newspaper contrast is 75%, patient threshold is 60%, reserves = 75/60 = 1.25

Thresholds

- Depending on contrast of object of interest and contrast sensitivity of patient success may vary
 - Need to evaluate contrast of object of interest and compare to contrast sensitivity of patient
 - Contrast enhancement strategies may improve appreciation of an object, but not to a functional level
 - Dictates whether modifications can be simple to complex
Modification
- Improve contrast reserves
- Improve function of visual system
- Improve patient mobility
- Improve safety in the home, school and work place

Modifications
- Patient centered
 - Reduce contrast confounders at or adjacent to ocular surface
 - Modify sensitivity of the visual system
 - Improve ocular health
 - Filters
 - Patient centered

Modifications
- Improve ocular health
 - Remove cataract
 - Reduce scatter of light
 - Improve resolution
 - Vitrectomy
 - Treat corneal pathology
 - Dry eye treatment
 - Corneal transplant

Modification
- Glare is excessive light that instead of improving object detection, reduces image quality
 - Goal is to reduce extraneous light but still allow useful light through
 - Useful light is typically filtered by different color tints
 - When considering glare need to assess disability

Modification
- Need to consider type of glare complaint to determine darkness and color
 - Discomfort glare vs Disability glare
 - Is light ‘painful’ or ‘uncomfortable’?
 - Is light causing inability to see?

Modification
- Glare reduction requires knowledge of pathology and environmental lighting
 - Need to know what cells in the eye are working to be able to absorb certain wavelengths
 - Need to know what wavelength of light entering eye that need to be blocked
Modification

- Need to assess patient in environment of complaint
 - Best to test in classroom, work station, home to properly assess current lighting effects

- Test outdoors when possible to determine proper sun filter
 - May need to test in different weather situations
 - May need to suggest more than one filter

Modifications

- Filters
 - Reduce glare
 - Transmit useful light
 - Block light that causes scatter
 - Improve image quality
 - Improve discomfort

- Filter evaluation is directed by patient preference
 - Start with lighter filter and then progress to darker tints
 - No studies have definitively shown one tint or transmission over another
 - Companies make recommendations
 - Clinical consensus
 - Patient rules

Suggested Tints for ocular conditions

- NOIR makes several suggestions
 - Macular Degeneration: Yellow, Amber, Plum
 - Glaucoma: Yellows, Ambers and Grays
 - Achromatopsia: Dark Orange-Red, Red
 - Retinitis Pigmentosa: Amber, Gray, Gray-Green
 - Diabetic Retinopathy: Amber, Gray, Green
 - Corneal Pathology: Yellow, Amber, Red

- www.noir-medical.com

Modification

- Glare control
 - Fit-over option
 - Tint spectacle lenses
 - Transition lenses
 - Tinted contact lenses
 - Spectacle treatments
 - Polarization
 - Mirror coat
 - Anti-reflective coating

Modifications

- Glare reduction
 - Recommend a wide brimmed hat/visor
 - Use hand while indoors to block light
 - Position self away from direct glare
Modification

- **Environmental Changes**
 - Used to enhance contrast away from visual system
 - Designed to make objects of interest appear to have greater contrast
 - Use opposite colors on color wheel
 - Use shades of differing luminance
 - Reduce causes of glare before it affects visual system
 - Use matte surfaces rather than glossy
 - Adjust lighting/light source

- **Lighting**
 - Proper lighting is essential
 - Task light vs Over head light
 - Positioning of light source
 - Below eye level
 - Directed toward paper or object of interest

- **Light Bulbs**
 - Warmth of light is crucial
 - Halogen
 - Fluorescent
 - Day light

 - May need to re-evaluate filter based on light bulb preference

- **Placement of light in environment**
 - Illumination of dark hallway
 - Consider placement of lights to guide patient
 - Position light sconces toward wall to reduce potential of light scatter
 - Use of lights outdoors to illuminate pathway

- **Lighting can improve mobility**
 - When traveling in poorly lit or poor contrast pathways, patients can use a flash light or a head borne light to improve detection
 - Can modify specific items in environment to illuminate or enhance contrast pathways
Modification

- Lighting source
 - Depends on patient goals
 - Need to evaluate area of use
 - Consider portability
 - Look at range of use
 - Task lamp that can travel from room to room
 - A Brandt Floor Lamp that can be moved on wheels at different areas of the house

- Reading can be frustrating for patients with poor contrast sensitivity
 - Reading speed may be slow due to poor letter recognition
 - Recognition of letters may be reduced causing poor efficiency while reading
 - Modifications may range from simple to complex strategies to improve contrast

Modification

- Typoscopes
 - Reduce background glare
 - Increase contrast at border
 - Reduce Figure-ground
 - Signature guide
 - Check Writing guide
 - Envelope guide

- Straight edge: contrast from background
 - Post-it notes
 - Bright Line
 - Yellow
 - Rose
 - Typoscope with acetate filter
 - Create any color filter

Modification

- Use higher contrast or opposite colors to improve detection of objects
- Doorways, windows and baseboards can be painted or highlighted with paint or tape to improve detection
- Stairs and railings can be marked with opposite colors to improve safety and detection of depth

Modification

- Typoscope with acetate filter
- Bright Line
 - Yellow
 - Rose
- Straight edge: contrast from background
 - Post-it notes
 - Signature guide
 - Check Writing guide
 - Envelope guide

Modification

- Task lamp that can travel from room to room
- A Brandt Floor Lamp that can be moved on wheels at different areas of the house

Modification

- Reading can be frustrating for patients with poor contrast sensitivity
 - Reading speed may be slow due to poor letter recognition
 - Recognition of letters may be reduced causing poor efficiency while reading
 - Modifications may range from simple to complex strategies to improve contrast

Modification

- Typoscope with acetate filter
- Bright Line
 - Yellow
 - Rose
- Straight edge: contrast from background
 - Post-it notes
 - Signature guide
 - Check Writing guide
 - Envelope guide

Modifications

- Speaking of Pets…
 - Consider High contrast collar and leash
 - LED illuminated collar and leash
 - Use sight substitution, i.e. bell on collar

- Electronic magnification
 - Closed circuit television
 - Reverse polarity
 - Flat screen
 - Portable vs Desk top application
 - Computer based application
 - Zoom Text/Zoom Text Express
 - Windows accessibility/Apple Accessibility

- Modifications
 - Electronic magnifiers can increase contrast to 100%
 - Maximize environmental presentation of material
 - Great strides in development of electronic magnification have made devices more accessible
 - Portability and range of use should be considered when performing assessment

- Modifications
 - Electronic Magnification
 - Distance and Near devices are available
 - Reading devices are small and more affordable
 - Improvements in resolution has improved function
 - Variable use of cameras
 - Acrobat, Multiview, and Onyx have increased access to distance viewing points not previously available with optical devices of same magnification

Modifications
Modifications

- Got an app for that?
- When purchasing cell phone, consider contrast options
 - Smart phone accessibility options
 - Apps available for increased contrast and magnification
 - Magnification
 - Contrast
 - Screen Readers

- Changing spatial frequency of object of interest also improves contrast
- Using relative size magnification, a larger version of an everyday object may improve visual ability
 - Large button phone
 - Large print checkbook
 - Large print crossword puzzles

- What happens when contrast can’t be improved to functional levels?
 - Sight substitution
 - Tactile
 - Bump dots
 - Puffy paint
 - Auditory
 - Books on Tape
 - Text to speech programs on a computer

Conclusions

- Contrast sensitivity is a useful and important part of functional vision assessment
 - Gives useful information for improving rehabilitation outcomes
 - Beneficial for determining appropriate referrals
 - Identifies areas of poor visual performance

Questions?